

WIND FARM

Flexible AC Transmission Systems

WIND ENERGY AND GRID INTEGRATION

Madrid 24-25 January 2006

Jacques COURAULT

Assumption:

Wind farm is with Fixed Speed Induction Generator (FSIG)

- ▶ 1/ Wind farm operation WITHOUT compensation:
 - Single line diagram / main assumptions
 - Physical aspects System behaviour,
 - Main factors on system behaviour,
 - Simulations.
- > 2/ Wind farm operation WITH DYNAMIC compensation:
 - Single line diagram,
 - Design,
 - Simulations,
- 3/ Conclusion & cost mitigation

REQUIREMENTS P.O.12.3

1 – WIND FARM OPERATION WITHOUT COMPENSATION

WITHOUT compensation / Single line diagram

T&D

WITHOUT COMPENSATION PHYSICAL ASPECTS

- active energy / mechanical behaviour:
 - During Fault Pmeca= Constant,
 - Mechanical acceleration according to Inertia,
 - Slip of induction generator is increasing,
 - Torque at induction generator is decreasing (square of the voltage).
- Reactive current injection
 - Generator Voltage > Network Voltage,
 - Short time duration ~T's (opened rotor time constant).

MAIN FACTORS ON SYSTEM BEHAVIOUR

MAIN FACTORS ON SYSTEM BEHAVIOUR GLOBAL VIEW

9MW Wind Farm Simulation

MAIN FACTORS ON SYSTEM BEHAVIOUR GLOBAL VIEW- SIX WIND TURBINES

WIND ENERGY AND GRID INTEGRATION - Madrid 24-25 January 2006

MAIN FACTORS ON SYSTEM BEHAVIOUR SYSTEM PROTECTIONS

- AC Overcurrent (Inst)
- AC overcurrent (positive seq.)
- AC current imbalance
- AC undervoltage (positive seq.)
- AC overvoltage (positive seq.)
- AC voltage unbalance (negative seq.)
- AC Voltage unbalance (Zero seq.)
- Underspeed
- Overspeed

Wind Farm Simulation WITHOUT compensation

9MW Wind Farm (With pitch control, pitch rate 2%)

at wind turbine bus

WIND ENERGY AND GRID INTEGRATION - Madrid 24-25 January 2006

WIND FARM SIMULATION WITHOUT COMPENSATION PITCH CONTROL - SYNTHESIS

9MW Wind Farm (With pitch control, pitch rate 2%)

- With taken assumptions
 - Fault duration 500ms
 - protection levels
- Wind Farm won't trip with the help of pitch control DURING fault recovery
- High reactive power consumption during fault recovery untill pulling in.
- No respect of Fig 4.2 of P.O.12.3

2 - WINDFARM OPERATION WITH COMPENSATION

AREVA WITH COMPENSATION - SINGLE LINE DIAGRAM

Wind Farm Simulation With D-STATCOM

9MW Wind Farm (with pitch control pitch rate 2%)

• at Wind turbine (D-STATCOM 19.5MVA ~2.16 p.u.)

T&D

WIND ENERGY AND GRID INTEGRATION - Madrid 24-25 January 2006

WIND FARM SIMULATION WITH D-STATCOM

9MW Wind Farm (with pitch control pitch rate 2°/s)

- With taken assumptions
- With the help of 2.16 p.u of D-STATCOM,
- No reactive power consumption during fault and after recovery
- Respect of 1 p.u current injection at Pcc during fault

3 - CONCLUSION & COST MITIGATION

WITHOUT / WITH D-STATCOM – 9 MW WIND FARM

Without dynamic compensation

With 19.5 MVAR D-STATCOM

WIND FARM WITH COMPENSATION CONCLUSION

- ASSUMPTION: Fixed Speed Induction generator case
 MAIN CONCLUSION:
 - Case by Case study
 - Network data
 - Impedance of Connecting transformer and line
 - Wind turbine data:
 - type of active power and speed control
 - design for protection levels
 - Inertia
 - Generator data
 - Curve Torque/slip
 - ratio sk/sn and Tek/Ten

Huge amount of reactive power needed during faults

WIND FARM WITH COMPENSATION COST MITIGATION

ASSUMPTION: Fixed Speed Induction generator case

Costs mitigation

- Power electronics VSC has a typical overload capability of 2 2.3
- Keeping our case study: SVS size = 1.15 p.u with x 2 overload capability
- To reduce costs:
 - Splitting SVS in D-STATCOM and MSC
 - Splitting SVS in D-STATCOM and TSC.
 - .../...

10 Mvar peak → 1 M€ EXPENSIVE....

Just for $\cos \phi$ and negative sequence, the simple SVC is a good solution.

